Cell-Based Bone Tissue Engineering

نویسندگان

  • Gert J Meijer
  • Joost D de Bruijn
  • Ron Koole
  • Clemens A van Blitterswijk
چکیده

T o restore skeleton function in the fi eld of orthopaedic and oral-maxillofacial surgery, bone tissue regeneration remains an important challenge. Spinal fusion, augmentation of fracture healing, and reconstruction of bone defects resulting from trauma, tumour, infections, biochemical disorders, or abnormal skeletal development are clinical situations in which surgical intervention is required. The types of graft materials available to treat such problems essentially include autologous bone (from the patient), allogeneic bone (from a donor), and demineralised bone matrices, as well as a wide range of synthetic biomaterials such as metals, ceramics, polymers, and composites. Until recently, the use of autologous bone grafts has been the number one choice for bone repair and regeneration [1–5]. A patient's own bone lacks immunogenicity and provides bone-forming cells, which are directly delivered at the implant site. Moreover, autologous bone grafts recruit mesenchymal cells and induce them to differentiate into osteogenic cells through exposure to osteoinductive growth factors [1,3,6,7]. Although there are many advantages to using autologous bone, there are major drawbacks to the harvesting procedure, and for centuries there has been a search for alternatives. The extra surgery involved in harvesting autologous bone causes morbidity at the donor site [1,3,6,8] and can cause post-operative continuous pain [3,9–11], hypersensitivity [3], pelvic instability [10–12], infection [6,9], and paresthesia [3,6]. These complications affect 10% to 30% of the patients [9]. Moreover, the amount of bone that can be collected is limited. As an alternative, the use of allografts (from human to human) eliminates the harvesting procedure and the quantity of available tissue is no longer an issue. Nevertheless, the quality of allografts is worse than that of autologous grafts. Allografts have a poor degree of cellularity, less revascularisation, and a higher resorption rate compared to autologous grafts [3,6], resulting in a slower rate of new bone tissue formation, as observed in several studies [11,13–15]. In addition, the immunogenic potential of these allografts and the risks of virus transmission to the recipient are serious disadvantages [2,14,16]. Although processing techniques such as demineralisation, freeze-drying, and irradiation have been shown to reduce the patient's immune response, processing also alters the structure of the graft and reduces its potential to induce bone healing (osteoinductivity), while the possibility of disease transmission still remains [3]. To overcome the drawbacks of the current bone graft materials, bone tissue engineering (BTE) using bone marrow stem cells has been suggested as a promising technique for reconstructing …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Current Concepts in Scaffolding for Bone Tissue Engineering

Bone disorders are of significant worry due to their increased prevalence in the median age. Scaffold-based bonetissue engineering holds great promise for the future of osseous defects therapies. Porous composite materials andfunctional coatings for metallic implants have been introduced in next generation of orthopedic medicine for tissueengineering. While osteoconductive materials such as hyd...

متن کامل

Review Paper: Embryonic Stem Cell and Osteogenic Differentiation

Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells, including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cell...

متن کامل

PLLA/HA Nano composite scaffolds for stem cell proliferation and differentiation in tissue engineering

Abstract Due to their mulitpotency, Mesenchymal stem cells (MSCs), have the ability to proliferate and differentiate into multiple mesodermal tissues. The aim of this study was to isolate MSCs from human Umbilical Cord (hUCMSCs) to determine their osteogenic potential on nanofibrous scaffolds. To this end, Poly (L-lactic acid) (PLLA)/Nano hydroxyapatite (HA) composite nanofibrous scaffolds were...

متن کامل

Bone Tissue Engineering: a Mini-Review

Despite advances in bone tissue engineering, auto grafts from intra-oral or extra-oral donor sites are still the gold standard for treatment of large craniomaxillofacial defects. Biomaterial development, application of growth factor, and stem cells, open new gateway to bone regeneration studies, but real translation from bench to bedside have not yet happened. In this review article, a number o...

متن کامل

A Review on Commonly Used Scaffolds in Tissue Engineering for Bone Tissue Regeneration

Introduction: Bone is one of the tissues that have a true potential for regeneration. However, sometimes the bone defects are so outsized that there is no chance of bone self-repair and restoration or the damage is such that it is not possible to repair with medical or surgical interventions. In these situations, bone grafts are the treatment of choice, but due to several obstacles, including l...

متن کامل

Therapeutic metallic ions in bone tissue engineering: A systematic review of the literature

An important field of bone tissue engineering (BTE) concerns the design and fabrication of smart scaffolds capable of inducing cellular interactions and differentiation of osteo-progenitor cells. One of these additives that has gained growing attention is metallic ions as therapeutic agents (MITAs). The specific biological advantage that these ions bring to scaffolds as well as other potential ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS Medicine

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2007